COTTON INSECTS AND MITES: Characterization and Management
THE COTTON FOUNDATION
Reference Book Series

The Cotton Foundation was created in 1955 to foster research and education for the cotton industry. Supported by membership dues and grants from agribusiness firms, the Foundation plays an integral role in focusing attention to high priority needs. Foundation members include the world’s finest manufacturers and suppliers of cotton machinery, plant health products, planting seed, testing instruments, processing materials and consulting, financial and communications services.

The alliance of agribusiness and the cotton industry strengthens the ability of both to reach common objectives—enhanced markets and profitability. Understanding that sales and services are ultimately linked to the vitality of the cotton industry, corporate suppliers support the Foundation with dues and special earmarked grants. The Foundation’s offices are located at the National Cotton Council’s headquarters in Memphis, Tennessee.

We are pleased to publish COTTON INSECTS AND MITES: Characterization and Management, the third in the series of cotton reference books. The first volume, COTTON PHYSIOLOGY was published in 1986, the second, WEEDS OF COTTON: Characterization and Control was published in 1992 and the fourth volume, VEGETABLE OILS AND AGRICHEMICALS became available in 1994.

Andrew G. Jordan
Executive Director
The Cotton Foundation
1918 North Parkway
Memphis, Tennessee 38112
ACKNOWLEDGEMENT

Publication of this book was made possible by a grant to The Cotton Foundation by Bayer Corporation, Agriculture Division. As a major supplier of crop protection chemistry to the cotton industry, Bayer Corporation supports this publication and other programs through The Cotton Foundation.

Bayer’s Agriculture Division is part of the worldwide network of Bayer group organizations. Through the expertise of the worldwide Bayer Group, Bayer has been able to bring to the U. S. innovative products for the cotton industry for over forty years.

In the early 50s integrated pest management (IPM) was key to several Bayer products introduced to control insects in cotton all across the Cotton Belt. Most recognized of these products were Di-Syston®, a systemic insecticide; Guthion®, a foliar insecticide; Monitor®, a foliar insecticide; Nemacur®, a nematicide; Bolstar®, a foliar insecticide; and Baythroid®, a synthetic pyrethroid insecticide. Also in the stable of cotton products is DEF 6®, the standard in cotton defoliation. To continue Bayer’s position in the cotton market, three new products—Admire®, Provado® and Gaucho®—a new family of chemistry—have been added to the product line.

Bayer’s Agriculture Division is proud to be a member and participant in the activities of The Cotton Foundation. The sponsorship of COTTON INSECTS AND MITES: Characterization and Management, the third book in the Foundation’s cotton reference book series, provides us the opportunity to extend to the industry the latest technical information concerning pest management and to supply information needed for the development of a stronger, more profitable cotton industry.
COTTON INSECTS AND MITES: Characterization and Management

Editors
EDGAR G. KING, JACOB R. PHILLIPS
AND RANDY J. COLEMAN

Executive Editor and Publishing Coordinator
JAMES M. BROWN

Number Three
THE COTTON FOUNDATION
REFERENCE BOOK SERIES

The Cotton Foundation Publisher
Memphis, Tennessee, U.S.A.
1996
TABLE OF CONTENTS

FOREWORD .. xxiii
PREFACE ... xxv
CONTRIBUTORS ... xxix
COMMENORATION .. xli

Chapter 1. Major Developments in Management of Insect and
Mite Pests in Cotton ...J. R. Bradley, Jr.

Introduction .. 1
Invasion of the United States by the Boll Weevil 1
Classic Early Studies on Bollworm Biology and Management 2
Classic Early Studies on Boll Weevil Biology and Management 2
Calcium Arsenate Period ... 3
Cotton Insect Scouting and the Threshold Concept 3
The Pink Bollworm as a Pest of Cotton in the United States 4
Introduction of the Synthetic Organic Insecticides 5
Emergence of New Pest Problems in Response to Insecticide Use 5
Development of Insect Strains Resistant to Insecticides 6
Development of Synthetic Diets for Cotton Insects 7
Reproduction-Diapause Control of Boll Weevil 8
The Discovery, Development and Utilization of Pheromones 8
The Evolution of the Integrated Pest Management Concept 9
Introduction of the Pyrethroid Insecticides ... 10
Boll Weevil Eradication .. 11
The Pilot Boll Weevil Eradication Experiment (PBWEE) 12
The Boll Weevil Eradication Trial (BWET) ... 12
Beltwide Eradication Program .. 12
Summary ... 13

SECTION I

CHARACTERIZATION OF INSECTS AND MITES

Chapter 2. Biology and Ecology of Important Insect and
Mite Pests of Cotton ...Thomas F. Leigh,
Steven H. Roach and Theo F. Watson

Introduction .. 17
Square and Boll Feeding Insects ... 17
Chapter 4. Short- and Long-Range Movement of Insects and Mites
Jimmy R. Raulston, Thomas J. Henneberry, Joe E. Leggett, David N. Byrne, Elizabeth Grafton-Cardwell and Thomas F. Leigh

Introduction ... 143
Bollworm/Tobacco Budworm ... 144
 Short-Range Movement ... 144
 Long-Range Movement ... 145
 Migratory Movement .. 145
 Implications of Helicoverpa/Heliothis Mobility 146
Pink Bollworm ... 148
Boll Weevil ... 152
 Origin and Distribution ... 152
 Flight Altitude and Distance 152
 Seasonal Movement .. 154
 Entry Into Overwintering Habitat 155
Whitefly ... 155
Spider Mite ... 159
Plant Bug .. 161
Summary ... 162

Chapter 5. Biology, Ecology and Epidemiology of Microbial Organisms Infecting Arthropod Pests
James D. Harper and Gerald R. Carner

Introduction ... 163
Viral Pathogens .. 164
 Baculoviruses .. 164
 Cytoplasmic Polyhedrosis Viruses 173
 Iridoviruses .. 175
 Ascoviruses .. 176
 Polydnaviruses ... 179
Fungal Pathogens .. 179
 Entomophthorales .. 181
 Nomuraea rileyi .. 187
 Beauveria bassiana ... 191
Bacterial Pathogens .. 192
Protozoan Pathogens .. 193
 Flagellate Infections .. 194
 Sporozoan Infections .. 194
 Cnidosporan Infections .. 195
Nematodes ... 199
SECTION II

TECHNOLOGICAL COMPONENTS OF INSECT AND MITE MANAGEMENT

Chapter 6. Modeling and Computerized Decision Aids
Terence L. Wagner, Richard L. Olson, Jeffrey L. Willers and Michael R. Williams

Introduction...205
Systems Analysis and Population Modeling................................207
Mathematical Foundations of Population Modeling.......................207
Cotton Insect Models...208
Beet Armyworm...209
Boll Weevil...210
Bollworm...217
Cotton Fleahopper..223
Pink Bollworm..225
Tarnished Plant Bug and Western Plant Bug...............................227
Spider Mites...229
Model Applications..229
General Applications..229
Specific Applications..230
Reasons for Lack of Farm Use of Population Models.......................234
Integrated Systems...236
The Future of Modeling Cotton Pest Management................................243
Conclusions..246
Summary...249

Chapter 7. Toward Comprehensive Economic Thresholds for Crop Management
W. L. Sterling, A. W. Hartstack and D. A. Dean

Introduction..251
Management Decisions..255
Costs...256
Benefits...258
Marginal Costs, Benefits and Profits...259
Economic Thresholds and Current Management............................259
Need for Dynamic Criteria..260
Multidimensional Analysis ... 260
Model Validations .. 261
Methods for Establishing Comprehensive Economic Thresholds 261
 Redefining the Economic Threshold.. 262
TEXCIM Simulations ... 264
 Justifying a Continuum .. 265
Factors Determining Threshold Values ... 266
Externalities and Their Costs ... 280
Simplicity .. 281
Limitations of TEXCIM .. 281
Summary .. 281
Acknowledgment .. 282

Chapter 8. Toxicology of Insecticides and Acaricides Thomas C. Sparks

Introduction .. 283
Classification and Mode of Action ... 285
Insecticide Mode of Action ... 288
 DDT and the Pyrethroids ... 288
 Organophosphorus Compounds ... 294
 Carbamates .. 297
 Nitromethylenes and Chloronicotinyls ... 298
 Avermectins .. 300
 Cyclodienes ... 301
 Phenylpyrazoles ... 302
 Formamidines .. 302
 Spinosyns ... 303
 Pyrroles .. 303
 Organotin Compounds and Sulfur Containing Acaricides 304
 Insect Growth Regulators .. 305
 Bacillus thuringiensis.. 307
Xenobiotic Metabolism .. 307
 Monooxygenases ... 308
 Hydrolases .. 308
 Glutathione Transferases ... 308
Insecticide Metabolism by Cotton Insects ... 309
 DDT and Pyrethroid Metabolism .. 309
 Metabolism of Organophosphorus Insecticides 313
 Metabolism of Carbamates .. 316
 Metabolism of Cyclodienes ... 317
 Metabolism of Formamidines .. 317
 Metabolism by Benzoylphenyl Ureas ... 318
Chapter 9. Resistance to Pesticides: Mechanisms, Development and Management

Thomas A. Miller

Introduction ... 323
Regional Pests and Resistance Potential .. 324
Resistance Management Tactics and Strategies .. 329
 The Australian Pyrethroid Strategy .. 330
 The Zimbabwe Resistance Management Strategy ... 331
 Pyrethroid Resistance in Tobacco Budworm in the United States 333
The Environmental Movement and Consequences .. 334
The Measurement of Insecticide Toxicity .. 335
 Probit Analysis .. 335
 Quasi-Synergism and Physical Artifacts ... 337
Type of Resistance .. 337
 Behavioral Resistance .. 338
 Penetration Resistance ... 338
 Altered Site of Action Resistance ... 339
 Metabolic Resistance Factors .. 342
 Symbiont Metabolism of Insecticides .. 343
 Induction of Metabolic Enzyme Activity ... 343
Types of Insecticide .. 344
Resistance Monitoring ... 348
 Lessons from Bioassay Comparisons .. 348
 Resistance Monitoring Methods ... 349
 Field Incubation ... 355
Development of Resistance .. 355
 Resistance Development in Pink Bollworm .. 359
 Resistance Development in Tobacco Budworm .. 365
 Resistance Development in Whitefly and Aphid .. 366
Strategies for Insecticide Use .. 367
 How Insecticide Resistance Traits are Produced ... 367
 Mixtures of Insecticides Versus Rotation of Insecticides 370
 Use of High Versus Low Insecticide Rates ... 373
Natural Elimination of Resistance .. 374
Summary and Perspective .. 376
Acknowledgments .. 378
Chapter 10. Application Technology

David B. Smith and Randall G. Luttrel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>379</td>
</tr>
<tr>
<td>Relationships Between Insect/Mite Control and Application, Formulation, and/or Meteorological Variables</td>
<td>380</td>
</tr>
<tr>
<td>Adjuvants and Behavioral Modifiers</td>
<td>383</td>
</tr>
<tr>
<td>Effects of Spray Deposits</td>
<td>384</td>
</tr>
<tr>
<td>Effects of Behavioral Modifiers</td>
<td>385</td>
</tr>
<tr>
<td>Application of Microbial Insecticides</td>
<td>386</td>
</tr>
<tr>
<td>Application of Chemical Insecticides and Miticides</td>
<td>387</td>
</tr>
<tr>
<td>Deposition Efficiency</td>
<td>390</td>
</tr>
<tr>
<td>Application Safety</td>
<td>397</td>
</tr>
<tr>
<td>Chemigation</td>
<td>399</td>
</tr>
<tr>
<td>Release of Parasites and Predators</td>
<td>400</td>
</tr>
<tr>
<td>Summary</td>
<td>402</td>
</tr>
</tbody>
</table>

Chapter 11. Pheromones and Other Behavior-Modifying Chemicals in Cotton Pest Management

Richard L. Ridgway and May N. Inscoe

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>405</td>
</tr>
<tr>
<td>Delivery Systems</td>
<td>406</td>
</tr>
<tr>
<td>Arthropod Pests</td>
<td>407</td>
</tr>
<tr>
<td>Boll Weevil</td>
<td>408</td>
</tr>
<tr>
<td>Pink Bollworm</td>
<td>412</td>
</tr>
<tr>
<td>Bollworm and Tobacco Budworm</td>
<td>414</td>
</tr>
<tr>
<td>Plant Bugs</td>
<td>418</td>
</tr>
<tr>
<td>Phytophagous Stink Bugs</td>
<td>418</td>
</tr>
<tr>
<td>Phytophagous Mites</td>
<td>419</td>
</tr>
<tr>
<td>Parasites and Predators</td>
<td>420</td>
</tr>
<tr>
<td>Egg Parasites</td>
<td>421</td>
</tr>
<tr>
<td>Larval and Adult Parasites</td>
<td>421</td>
</tr>
<tr>
<td>Predaceous Insects</td>
<td>424</td>
</tr>
<tr>
<td>Predaceous Mites</td>
<td>425</td>
</tr>
<tr>
<td>Opportunities</td>
<td>425</td>
</tr>
<tr>
<td>Summary and Conclusion</td>
<td>426</td>
</tr>
<tr>
<td>Authors’ Note</td>
<td>427</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>427</td>
</tr>
</tbody>
</table>

Chapter 12. Status of Rearing Technology for Cotton Insects

Janine E. Powell and Jon L. Roberson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>429</td>
</tr>
</tbody>
</table>
Status of Rearing for Major Pests .. 430
Boll Weevil Rearing .. 432
Tobacco Budworm and Bollworm Rearing .. 436
Pink Bollworm Rearing .. 439
Plant Bug Rearing ... 440
Armyworm Rearing .. 440
Aphid Rearing ... 441
Quality Control Strategies .. 441
Responsibility for Field Evaluation ... 441
Technology Transfer ... 442
Summary ... 443

SECTION III
SUPPRESSION COMPONENTS

Chapter 13. Chemical Control Gary A. Herzog, Jerry B. Graves,
Jack T. Reed, William P. Scott and Theo F. Watson

Introduction .. 447
Evolution of Chemical Control .. 449
Southeastern United States .. 449
Mid-South and Southwest United States .. 452
Western United States ... 457
Relative Efficacy .. 460
Insecticide Recommendations .. 465
Future Areas of Research ... 466
Summary .. 468

Introduction .. 471
Stalk Destruction, Field Sanitation, Harvest Practices, Tillage and
Winter Irrigation ... 472
Boll Weevil .. 472
Pink Bollworm .. 481
Establishing Earliness ... 486
Genetic Earliness .. 486
Date of Planting .. 492
Row Width and Drill Spacing ... 493
Fertility ... 495
Chemicals That Hasten Maturity; Irrigation and Nitrogen
Management .. 496
Translocations ... 559
Cytoplasmic Incompatibility ... 560
Future Possibilities .. 560
Bollworm and Tobacco Budworm ... 560
Pink Bollworm ... 560
Boll Weevil .. 561
Summary ... 562

Chapter 17. Host Plant Resistance...Johnie N. Jenkins and F. D. Wilson

Introduction .. 563
Germplasm Sources of Pest Resistance 564
Cultivated Cottons .. 564
Primitive Race Collection .. 568
Resistance to Insects and Mites ... 570
Boll Weevil ... 570
Bollworm/Tobacco Budworm Complex 573
Pink Bollworm ... 584
Cotton Leafperforator .. 587
Plant Bugs ... 588
Leafhoppers (Jassids) .. 592
Whiteflies ... 592
Thrips .. 594
Spider Mites ... 595
Summary ... 596

SECTION IV
CONCEPTS OF POPULATION MANAGEMENT

Chapter 18. Suppression and Management of Cotton Insect Populations
on an Areawide Basis T. J. Henneberry and J. R. Phillips

Introduction .. 601
Cotton Insect Pests and Cotton Production 601
Areawide Insect Suppression or Management 602
Goals and Objectives of Areawide Suppression or Management....... 602
Some Basic Considerations for Insect Population Suppression in
Areawide Systems .. 604
Basic Requirements .. 604
Economic Thresholds .. 605
Sampling ... 605
Modeling ... 606
Natural Mortality and Natural Enemies .. 606
Ecosystem and Pest Complex ... 607
Management Areas .. 607
Geographic Area ... 607
Impact of Insect Migration ... 608
Long Term Maintenance of Areawide Suppression or Management Areas .. 608
Population Suppression Methodology .. 609
Technology .. 609
Target Pests of Major Concern ... 609
Selected Examples of Progress in Developing Areawide Cotton Insect Suppression Programs .. 610
Boll Weevil .. 610
Bollworm and Tobacco Budworm .. 615
Pink Bollworm ... 618
Discussion ... 622
Summary .. 623

Introduction .. 625
Early History of the Boll Weevil .. 626
Justification for a Boll Weevil Eradication Program 628
Development of New Boll Weevil Control Technology 632
Eradication Trials .. 633
Eradication Program .. 639
Southeastern Boll Weevil Eradication Program 640
Southwestern Boll Weevil Eradication Program 646
Current Status of Boll Weevil Eradication Programs 647
Suggested Plan for Eradication in the Remainder of the Cotton Belt 648
Concluding Comments on the Fundamental Principles of Boll Weevil Population Suppression .. 649

SECTION V
IMPLEMENTATION OF INSECT AND MITE PEST MANAGEMENT PROGRAMS

Introduction .. 655
Evolution of Control Technology .. 656
Early Control Efforts.. 656
The Arsenical Era.. 657
Arrival of Organic Insecticides.. 658
Scouting and IPM.. 659
Arrival of the Pyrethroids... 660
Development of Resistance to Pyrethroids.. 661
Boll Weevil Eradication: A Summary of Program Events and
Expansions in the Southeast ... 662
The Boll Weevil Eradication Trial.. 662
Eradication Expansion Into the Carolinas... 663
Eradication Expansion Into Georgia, Florida and Alabama............... 665
Cotton Insect Management Following Boll Weevil Eradication............ 665
North Carolina.. 665
South Carolina... 669
The Future.. 672

Chapter 21. Insect and Mite Pest Management in the
Mid-SouthDonald R. Johnson, Richard E. Caron,
Robert B. Head, Flernoy G. Jones and James S. Tynes

Introduction... 673
Historical Aspects of Insect and Mite Management in the Mid-South... 674
Bollworm and Tobacco Budworm Resistance................................... 676
Boll Weevil Resistance.. 677
Beginning of Cotton Pest Management in the Mid-South................... 677
Insect Management Practices in the Mid-South................................ 678
Thrips .. 679
Tarnished Plant Bug, Cotton Fleahopper, and Clouded Plant Bug.... 680
Bollworm and Tobacco Budworm.. 681
Boll Weevil... 684
Cutworms .. 687
Cotton Aphid .. 687
Spider Mites .. 688
Whiteflies .. 688
Fall Armyworm and Beet Armyworm... 688
Cabbage Looper and Soybean Looper... 689
Scouting Techniques in the Mid-South... 689
Point Sampling.. 689
Random Sampling.. 690
Sequential Sampling... 690
Areawide Programs for Cotton Insect Management in the Mid-South.. 690
Boll Weevil Programs .. 690
Chapter 22. Insect and Mite Pest Management in the Southwest

James E. Leser, Miles A. Karner, Charles R. Ward and J. K. Walter

Introduction ... 695
Texas Recommendations ... 696
Production Areas in Texas ... 698
Insect and Mite Problems in Texas 699
Oklahoma Recommendations 720
Historical Background ... 720
Insect and Mite Problems in Oklahoma 722
New Mexico Recommendations 726
Historical Background ... 726
Insect and Mite Problems in New Mexico 726
Extension Service Guides and the Guide Revision Process 735
Texas ... 735
Oklahoma ... 736
New Mexico .. 737
Summary ... 737
Acknowledgment .. 739

Chapter 23. Insect and Mite Management in the West

Leon Moore, C. A. Beasley, Thomas E. Leigh and Thomas J. Henneberry

Introduction ... 741
History and Evolution of Insect and Mite Management 742
The Major Pests .. 742
Control Recommendations .. 743
Chemical Control Era .. 743
Production Practices and Pest Problems 744
Insecticide Resistance .. 745
Effect on Honey Bees .. 746
Integrated Pest Management Programs 746
Development .. 746
Components and Implementation 747
Dissemination of Information .. 747
Community Action Programs ... 748
Pink Bollworm and Boll Weevil 748
Silverleaf Whitefly .. 750
San Joaquin Valley Program .. 751
Future Programs .. 751
Education and Extension Leadership.............................. 751
Summary ... 752

SECTION VI

ECONOMICS OF INSECT AND MITE PEST CONTROL

Chapter 24. The Economic Impact of Cotton Insects and Mites
 .. Luis Sugiyama and Craig Osteen

Introduction ... 755
Key Insect and Mite Pests .. 755
Pest Incidence ... 757
Chemical Use .. 759
Control Expenditures .. 761
Cotton Yield Losses .. 761
Value of Direct Damage ... 762
Aggregate Effects ... 762
Summary ... 763
Disclaimer .. 764
APPENDIX .. 765

Chapter 25. Benefit - Cost Analysis of Integrated Pest Management Programs
 .. Mark J. Cochran

Introduction ... 781
Approaches to IPM Evaluations .. 781
Why Benefit-Cost Analysis? ... 781
Conceptual Paradigms and Paradoxical Issues.................... 783
Data Needs .. 783
Studies of Regional and National Impacts of IPM Programs on
Producer Income, Consumer Surplus and Local Economies 784
 Arkansas-Bollworm Management Community 784
 Texas Rolling Plains Uniform Planting Date Cotton System 785
Aggregate Analysis of Increased Bollworm Infestations on the
Texas High Plains ... 786
 Texas Short-Season Cotton Systems 787
 Southeastern Boll Weevil Eradication Program 789
 Early Appraisals of National Benefits of Boll Weevil Control
 Programs .. 791
Chapter 26. Economic Evaluation of Insect Eradication: The Case of Boll Weevils in the Southeast

Introduction ... 795
Evaluation Methods and Data Collection ... 797
Farmer Response to Mandatory Pest Control ... 798
Pesticide Savings from Eradication .. 799
Cotton Yield and Acreage Effects ... 804
Program Costs ... 806
Overall Net Return to Eradication ... 806
Evaluation Results for Alabama, Florida and Georgia 808
Current Issues ... 810
Summary ... 810

SECTION VII

PERSPECTIVES

Chapter 27. Crop Phenology and Insect Management

Introduction .. 815
History ... 816
Attitude of Public Sector Researchers/Extension Workers 817
Cost-Price Squeeze of the 1980s ... 817
Crisis of the 1990s ... 818
Complexity of Pest Control Decisions ... 818
Threshold Levels ... 818
Long Term vs. Short Term Considerations .. 819
Consideration of the Cotton Plant .. 819
Systematic and Predictable Manner of Cotton Growth and Development ... 819
Potential Economic Values of Different Fruiting Sites 820
Early Maturing/Short Season Crop ... 822
Harvesting Considerations .. 822
Consideration of Fruit Loss Compensation 825
Example .. 827
Implications ... 828
Summary .. 829
Chapter 28. Environmental Issues

- Introduction .. 831
- Pesticide Use Patterns ... 831
- Registration and Regulations .. 832
 - Registration .. 832
 - Regulations .. 833
- Environmental and Biological Risks 834
- Groundwater Protection ... 836
- Worker Safety .. 837
 - Toxicity .. 839
- Pest Resistance .. 839
- Summary .. 841

Chapter 29. Working Together: Roles of Private Consultants, Industry, Researches, Extension, and Growers

- Introduction .. 843
- Historical Background ... 844
 - The Land Grant System ... 844
 - Private Industry .. 845
 - Private Consultants ... 846
- Cooperative Efforts .. 847
 - Boll Weevil Reproduction-Diapause Control Programs 848
 - Insecticide Resistance Management 849
- Summary .. 851

Chapter 30. Cotton Insect Management: A Look to the Future

- Introduction .. 853
- Future Cotton IPM Systems .. 853
- IPM Constraints and Opportunities 855
- Summary .. 859

Literature Cited .. 861

Insect, Mite and Spider Index ... 997

Insecticide and Acaricide Index .. 1002

Subject Index ... 1005
FOREWORD

To appreciate the impact of insect and mite pests on cotton production one needs to consider the cotton plant itself and the environment and conditions under which it is grown. For in-depth knowledge of the cotton plant—its botanical, physiological, and reproductive, etc. characteristics—the reader is referred to COTTON PHYSIOLOGY, Number 1 in The Cotton Foundation Reference Book Series.

Commercial production of cotton in the United States and most production areas of the World is as an annual crop with each season starting from planting the seed and ending with harvest. This is true even though the cotton plant botanically is a perennial.

In commercial production of cotton, the balance between vegetative and fruiting development at most stages throughout the growing season is critical to successful production. Among the major categories of stress factors that influence this balance is insect and mite pests.

There are hundreds of insect and mite species that are potential cotton pests. However, as recognized by professional cotton entomologists and producers, the major economic cotton insect and mite pests in the United States are considered in twenty one groups, some groups consisting of more than one species.

This book on COTTON INSECTS AND MITES was conceived in 1985 as a joint project of the annual Cotton Insect Research and Control Conference and The Cotton Foundation. A proposed contents outline for the Book was submitted to a distinguished Advisory Committee to help formulate its contents; the project was officially begun in 1987. Advisory Committee members, classified by their 1986 positions, were Perry L. Adkisson, Deputy Chancellor, Texas A&M University, College Station, TX; T. Don Canerday, Chairman, Division of Economic Entomology, University of Georgia, Athens, GA; Robroy Fisher, Cotton Producer, Glen Allan, MS; T. J. Henneberry, Director, Western Cotton Research Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Phoenix, AZ; Louise Henry, Co-Owner, Henry Agri-Scientific, Bishop, GA; Harry L. McMenemy, Regional Technical Manager, Agricultural Division, Mobay Chemical Corporation, Memphis, TN; Leon Moore, Extension Entomologist, Cooperative Extension Service, University of Arizona, Tucson, AZ; H. T. Reynolds, University of California (Retired), Riverside, CA; and Ronald H. Smith, Extension Entomologist, Cooperative Extension Service, Auburn University, Auburn University, AL.

In an early stage of its development, COTTON INSECTS AND MITES was designated as Number 3 in the Cotton Foundation Reference Book Series. Number 1, COTTON PHYSIOLOGY, was already published (1986), and Number 2, WEEDS OF COTTON (1992) was much further advanced in development at that time. As it turned out, Number 4, VEGETABLE OILS AND AGRICHEMICALS, was developed much faster and was published in 1994 ahead of COTTON INSECTS AND MITES. Factors contributing to this were the much more extensive and comprehensive treatment of the subject and the involvement of a much larger
number of authors with COTTON INSECTS AND MITES.

I have had the pleasure of serving as executive editor and publishing coordinator for all four of these cotton reference books. My work has been mainly with the editors and the printing companies. The editors, in working with the authors, have done most of the work. In the case of COTTON INSECTS AND MITES, this has meant working on thirty chapters involving eighty contributors.

Drs. Edgar G. King and Jacob R. Phillips were selected originally by their peers to edit this book. Both have had distinguished and fruitful careers as cotton research entomologists. Dr. Phillips was recipient of the prestigious Mobay Cotton Research Recognition Award for 1990. This award program was administered by The Cotton Foundation. In 1993 Dr. King was recognized with the Outstanding Scientist of the Year Award presented by the Agricultural Research Service of the U. S. Department of Agriculture. Dr. Phillips retired from the University of Arkansas before publication of this book was completed. Dr. King still serves as a researcher and research administrator with USDA’s Agricultural Research Service.

Mr. Randy J. Coleman, a co-worker of Dr. King, became heavily involved in editing soon after this book was started. He became a major contributor to its development. The addition of Mr. Coleman as one of the editors is most deservingly in recognition of his dedicated efforts and many contributions.

James M. Brown, Ph.D.
Manager, Production Technology (Retired)
National Cotton Council of America
Consultant to
The Cotton Foundation
1918 North Parkway
Memphis, Tennessee 38112
PREFACE

The book COTTON INSECTS AND MITES: Characterization and Management is the most comprehensive review and synthesis of knowledge and technology on United States cotton insects and mites available today. The book includes an introductory Commemoration reviewing the fifty-year history of the Cotton Insect Research and Control Conference followed by 30 chapters. Chapter 1, “Major Developments in Management of Insect and Mite Pests in Cotton,” summarizes key events leading to the state-of-the-art for managing insect and mite pests in cotton. The other 29 chapters are divided into seven sections [Section I “Characterization of Insect and Mites” (four chapters); Section II “Technological Components of Insect and Mite Management” (seven chapters); Section III “Suppression Components” (five chapters); Section IV “Concepts of Population Management” (two chapters); Section V “Implementation of Insect and Mite Pest Management Programs” (four chapters); Section VI “Economics of Insect and Mite Pest Control” (three chapters); and Section VII “Perspectives” (four chapters)].

The concept of publishing a book on “Cotton Insects and Mites...” to commemorate and complement the Cotton Insect Research and Control Conference was first conceived in 1985. The intent was to update and expand the control, biological, and survey information heretofore given in pre-1985 Conference reports, as well as to synthesize information for cotton entomology in the United States. An expectation was to publish a book on cotton insects and mites that would be useful to growers as well as the scientific and technological community. Our hope is that this book will serve as a springboard for improved management of cotton insects and mites.

Eighty of the United States leading authorities on “Cotton Insects and Mites” contributed to the development of this book. It reflects pioneering research conducted by hundreds of scientists, the rich history of the cotton industry, the efforts of extension personnel, economists, and consultants to communicate and transfer the technologies, and the indomitable spirit of cotton growers, who each year must produce a profitable crop despite competition by insects and mites and other pests for the seed and fiber. This book, reflecting the extraordinary complexity of the interactions between the plant, insects and mites, and the cotton production and utilization community, truly was an interdisciplinary accomplishment involving the public and private sector. Consequently, it is not surprising that it cites 3200 references and is over 1000 pages in length.

These contributions summarize and synthesize knowledge by many of the United States most recognized cotton insect and mite authorities. And, in some cases, they are among their last major scientific contributions. One scientist, C. A. (Mr. Charlie) Parencia, lead author of the “Commemorative” paper and chronicler of the Cotton Insect Research and Control Conference for sixteen years and a participant for 35 of its 50-year existence passed away in 1987. One of the United States most eminent authorities on the “Biology and Ecology of Important Insect and Mite Pests of Cotton,” (Chapter 2), T. F. (Tom) Leigh, passed away in 1993. Other chapters were...
coauthored by authorities who have since retired, but many have continued their work in other roles within the cotton industry. On the other hand, the search for new information, new and improved technology, and the communication and transfer of this information and technology is being continued by a new generation of research scientists, extension entomologists, and consultants as exemplified in their contributions to this book.

The cotton field is home for hundreds of insect and mite species, but only a relatively few actually can be termed pests, i.e., competitors with people for seed and fiber. Most of the organisms inhabiting these fields are, in fact, beneficial, either as predators or parasites of potential pests or serving as food for the predators and parasites. Many microbials, including viruses, bacteria, fungi, microsporidia, and nematodes also function as beneficials attacking potential pests. Nevertheless, according to the 1996 Cotton Insect Research and Control Conference Proceedings, estimated management costs and revenue losses to insect and mite pests in 1995 were $1.68 billion, despite the application of insecticides and miticides.

As stated by Dr. J. R. Bradley in Chapter 1, “The entry of the boll weevil into the United States [in 1892] is probably the single most important entomological event to have occurred in cotton.” It was largely responsible for the shift of cotton production from the Southeast to the Southwest. Efforts to control this exotic pest that arrived without a complement of co-evolved natural enemies has driven cotton insect and mite management practices for over 100 years. The pink bollworm is a similar force in the Far West and plant bugs often serve as key pests in the Mid-South. These insects are often labeled as key pests because they are not effectively controlled by natural enemies and consequently each growing season they are among the first pests requiring insecticide application.

The evolution of plant insect and mite management practices and the use of synthetic chemical pesticides in cotton often has been in the forefront of technological developments in plant entomology in the United States. The development of short-season cotton varieties and stalk destruction was initiated to avoid late-season damage by boll weevil and bollworm populations. The cotton industry began using arsenicals to control the boll weevil in the 1920s, and cotton was one of the first crops where pesticides were applied aerially. Synthetic organic insecticides have been used extensively since their discovery in the 1940s. However, resistance to these chemicals quickly evolved with the occurrence of organochlorine resistance in the boll weevil in 1955 and shortly thereafter in the bollworm and tobacco budworm to organochlorines and organophosphate compounds. The trend of introduction of new chemicals, development of resistant insect and mite populations, outbreaks of secondary pests (often as a consequence of the elimination of natural enemies), and the research and development of new chemicals to manage the ever evolving complex of insect and mite pests is a constant challenge to the grower, industry, and researchers to evolve new and improved control technologies.

The National Cotton Council of America recognized the futility of this treadmill of discovery, obsolescence, and increasing cost and complexity and the key role of
the boll weevil as a pest in the Southeast, Mid-South, and Southwest in this evolutionary sequence. They enlisted the support of the federal, state, and private sector as early as 1957 in their efforts to eradicate the boll weevil from the United States. The successful elimination of the boll weevil as a pest of cotton in Virginia, the Carolinas, Georgia, north Florida, California and Arizona is a major entomological success story, rivaling the successful eradication of the screwworm from North America. Nevertheless, elimination of the boll weevil from the Mid-South and Southwest has been more intractable and the search continues for new and improved technologies to aid efforts in eliminating the weevil as a pest in the rest of the United States and northern Mexico. The evolution of these efforts is detailed in Chapter 19.

COTTON INSECTS AND MITES: Characterization and Management establishes a foundation on the biology, ecology, and systematics of pests and their natural enemies, discusses technological tools for managing pests and their natural enemies, reviews field-by-field and population management tactics, and integrates this information into implementation programs for four broadly defined production regions of the United States. Extension entomologists collaborated in authoring the chapter for their respective region. The economics of these pest suppression and elimination strategies are discussed and placed in context with environmental issues and the cotton production and utilization community. The interaction between the grower, research, extension, and consultant communities was of particular interest.

The 1989 Entomological Society of America "Common Name of Insects and Related Organisms" was the guide for species nomenclature used in this book. Accordingly, the scientific names Helicoverpa zea and Heliothis virescens refer to the bollworm and the tobacco budworm, respectively, thereby acknowledging that these two pests differ considerably and are not collectively "heliothis" or "bollworms." Another potential area of confusion involved the common term "plant bugs" to describe several genera of bugs in the family Miridae. The genus Lygus contains several species, and one in particular, Lygus hesperus has no approved common name, however, it is referred to as the western lygus bug throughout the monograph. Recently, differences in enzyme patterns, biology, extended host range, crossing experiments, and mating behavior observations within populations of the sweetpotato whitefly, Bemisia tabaci, have indicated that strains or biotypes exist for this species. Perring et al. (1993) suggested that the sweetpotato whitefly strain B is truly a distinct species and named it the silverleaf whitefly, Bemisia argentifolii. Where appropriate, this terminology has been adopted in discussing this organism.

We express our appreciation to the many authors who contributed their time to make this book possible, to the Bayer Corporation, Agriculture Division for support in publication of the book, and to The Cotton Foundation and the National Cotton Council of America for their leadership and support throughout the development and completion of the book. Dr. James M. Brown, in his role as consultant to The Cotton Foundation, deserves a special thanks for facilitating completion of this book and in maintaining the continuity of The Cotton Foundation Reference Book Series.
Editors:

Edgar G. King, Ph.D.
Laboratory Director
Subtropical Agricultural Research Laboratory
USDA, ARS
Weslaco, Texas 78596

and

Jacob R. Phillips, Ph.D.
Professor (Retired)
University of Arkansas
Fayetteville, Arkansas 72701

and

Randy J. Coleman, M.S.
Research Entomologist
Subtropical Agricultural Research Laboratory
USDA, ARS
Weslaco, Texas 78596
CONTRIBUTORS

Dr. Jack S. Bacheler
Extension Entomologist
North Carolina State University
2310 Gardner Hall, Box 7613
Raleigh, North Carolina 27695

Dr. Alan C. Bartlett
Geneticist
USDA, ARS
Western Cotton Research Laboratory
4135 E. Broadway
Phoenix, Arizona 85040

Dr. C. A. (Bud) Beasley
Area IPM Advisor
University of California
c/o National Weather Service
Riverside, California 92521

Dr. M. R. (Randy) Bell
Research Entomologist
USDA, ARS
Southern Insect Management Laboratory
Box 346
Stoneville, MS 38776

Dr. J. R. Bradley, Jr.
Professor
Department of Entomology
North Carolina State University
Research Annex, Box 7630
Raleigh, NC 27695

Dr. James R. Brazzel
Center Director
USDA, APHIS
Methods Development Center
Mission, Texas 78572

Current Address if Different

(Retired)
Dr. J. M. (Jim) Brown
Consultant
National Cotton Council of America
1918 North Parkway
Memphis, TN 38182

Dr. David N. Byrne
Professor
University of Arizona
Tucson, AZ 85721

Dr. T. Don Canerday
Division Chairman-Entomology
University of Georgia
200 Barrow Hall
Athens, GA 30602

Dr. Gerald A. Carlson
Professor
Dept. of Agricultural and Resource Economics
North Carolina State University
Box 8109
Raleigh, NC 27695

Dr. Gerald R. Carner
Professor
Department of Entomology
Clemson University
Clemson, SC 29634

Dr. Richard E. Caron
Associate Professor
University of Tennessee
West Tennessee Experiment Station
Jackson, TN

Dr. Mark J. Cochran
Professor
Department of Agricultural Economics
University of Arkansas
1960 Winwood
Fayetteville, AR 72703

(Retired)
616 Little Creek Rd.
Auburn, AL 36832

Georgia Cotton Commission
1840 Whipoorwill Rd.
Watkinsville, GA 30677

(Deceased)
Dr. F. Aubrey Harris
Research Entomologist
Mississippi State University
Delta Research & Extension Center
P.O. Box 197
Stoneville, MS 38776

Mr. Albert W. Hartstack
Agricultural Engineer
Department of Entomology
Texas A&M University
College Station, TX
(Retired)
Rt. 1, Box 56
Washington, TX 77880

Dr. Robert B. Head
Extension Entomologist
Mississippi State University
103 Clay Lyle Bldg.
Mississippi State, MS 39762

Dr. Thomas J. Henneberry
Laboratory Director
USDA, ARS
Western Cotton Research Laboratory
4135 E. Broadway
Phoenix, AZ 85040

Dr. Louise G. Henry
Consultant
Henry Agri-Scientific
2180 Elder Rd.
Bishop, GA 30261

Dr. Gary A. Herzog
Associate Professor
University of Georgia
Coastal Plain Experiment Station
P.O. Box 748
Tifton, GA 31793

Dr. May N. Inscoe
Chemist
USDA, ARS
Insect Chemical Ecology Laboratory
Bldg. 011A, RM 214, BARC-WEST
Beltsville, MD 20705
Dr. Johnie N. Jenkins
Research Geneticist
USDA, ARS
Crop Science Research Laboratory
P.O. Box 5367
Mississippi State, MS 39762

Dr. Donald R. Johnson
Extension Entomologist
University of Arkansas
P.O. Box 391
Little Rock, AR 72203

Dr. Flemoy G. Jones
(Associate Professor)
Retired
University of Missouri
Columbia, Missouri

Dr. Andrew G. Jordan
Director, Technical Services
National Cotton Council
P.O. Box 12285
Memphis, TN 38182

Dr. Miles A. Karner
Area Extension Entomologist
Oklahoma State University
Cooperative Extension Service
Rt. 1, Box 15A
Altus, OK 73521

Dr. Edgar G. King
Laboratory Director
USDA, ARS
Subtropical Agricultural Research Laboratory
2301 S. International Blvd.
Weslaco, TX 78596

Dr. E. F. Knipling
(Retired)
Collaborator
USDA, ARS
Rm. 10 Bldg. 005
Beltsville, Maryland 20705
Dr. William R. Lambert
Extension Entomologist
University of Georgia
P.O. Box 1209
Tifton, GA 31793

Dr. Marion L. Laster
Research Entomologist
USDA, ARS
Southern Insect Management Laboratory
P.O. Box 346
Stoneville, MS 38776

Dr. Joe E. Leggett
Research Entomologist
USDA, ARS
Western Cotton Research Laboratory
4135 E. Broadway
Phoenix, AZ 85040

Dr. Thomas F. Leigh
Professor
University of California
17053 Shafter Ave.
Shafter, CA 93263

Dr. James F. Leser
Extension Entomologist
Texas Agricultural Extension Service
Texas A&M University
Rt. 3, Box 213AA
Lubbock, TX 79401

Dr. Juan D. López, Jr.
Research Entomologist
USDA, ARS
Areawide Pest Management Research Unit
2771 F&B Road, Rm. 126, Bldg. #2
College Station, TX 77845

Dr. George E. Loughner
Primary State Entomologist
California Dept. Food and Agriculture
1220 N. Street, Room A-350
Sacramento, CA 95814
Mr. Dick L. Palmquist
FMC Corporation
1735 Market St.
Philadelphia, PA 19103

Mr. Charles R. Parencia (Deceased)
Collaborator
USDA, ARS
Southern Insect Management Laboratory
Stoneville, MS 38776

Dr. David W. Parvin, Jr.
Professor
Department of Agricultural Economics
Mississippi State University
Box 9755, Rm 318, Lloyd Ricks Bldg.
Mississippi State, MS 39762

Dr. Jacob R. Phillips (Retired)
Professor
Department of Entomology
University of Arkansas
Fayetteville, AR 72701

Dr. Janine E. Powell
Research Entomologist
USDA, ARS
Southern Insect Management Laboratory
Stoneville, MS 38776

Dr. Jack T. Reed
Associate Professor
Entomology Department
Mississippi State University
P.O. Box 9775
Mississippi State, MS 39762
Dr. Richard L. Ridgway
Research Entomologist
USDA, ARS
Insect Biocontrol Laboratory
Bldg. 011A, RM 214, BARC-WEST
Beltsville, MD 20705

Dr. Steven H. Roach
Research Entomologist
USDA, ARS
Cotton Production Research Unit
Florence, SC 29502

Mr. Jon L. Roberson
Supervisory Entomologist
USDA, ARS
Southern Insect Management Laboratory
Mississippi State, Mississippi 39762

Dr. Mitchell E. Roof
Extension Entomologist
Clemson University
Pee Dee Research & Extension Center
Rt. 1, Box 531
Florence, SC 29501

Mr. Glenn Sappie
Research Assistant
North Carolina State University
Raleigh, NC 27695

Mr. William P. Scott
Research Entomologist
USDA, ARS
Southern Insect Management Laboratory
P.O. Box 346
Stoneville, MS 38776

Dr. C. Wayne Smith
Professor
Soil & Crop Sciences Department
Texas A&M University
College Station, TX 77843

xxxvii
Dr. Kenneth R. (Rod) Summy
Research Entomologist
USDA, ARS
Subtropical Agricultural Research Laboratory
2413 E. Hwy. 83
Weslaco, TX 78596

Dr. James S. Tynes (Deceased)
Extension Entomologist
Louisiana State University
202 Knapp Hall
Baton Rouge, LA 70803

Dr. Eric J. Villavaso
Research Entomologist
USDA, ARS
Boll Weevil Research Unit
Mississippi State, MS 39759

Dr. Terence L. Wagner
Research Entomologist
USDA, ARS
Crop Simulation Research Unit
P.O. Box 5367
Mississippi State, MS 39762

Dr. J. K. (Knox) Walker (Retired)
Professor
Department of Entomology
Texas A&M University
College Station, TX 77843

Dr. Charles R. Ward
Professor
Department of Entomology
9301 Indian School Rd., NE, Suite 201
New Mexico State University
Albuquerque, NM 87112

Dr. Theo F. Watson (Retired)
Professor
Department of Entomology
University of Arizona
Forbes Bldg. 410
Tucson, AZ 85721
Dr. Michael E. Wetzstein
Professor
Department of Agricultural & Applied Economics
University of Georgia
Athens, GA 30602

Dr. Jeffrey L. Willers
Research Entomologist
USDA, ARS
Crop Sciences Research Laboratory
P.O. Box 5367
Mississippi State, MS 39762

Dr. Michael R. Williams
Extension Entomologist
Mississippi State University
P.O. Box 9775
Mississippi State, MS 39762

Dr. F. Douglas Wilson
Research Geneticist
USDA, ARS
Western Cotton Research Laboratory
4135 E. Broadway
Phoenix, AZ 85040
COMMEMORATION

The monograph COTTON INSECTS AND MITES: Characterization and Management would not be complete without a brief historical review of the Cotton Insect Research and Control Conference. The Conference has been held annually since its beginning in 1947. This monograph has been written in commemoration of the conference.

Each year cotton research and extension entomologists from sixteen cotton growing State Agricultural Experiment Stations, the United States Department of Agriculture, the National Cotton Council of America, Cotton Incorporated, consultant organizations, and the chemical industry meet to review research and experiences of the current year. Special topics such as insecticide resistance are often treated to develop guidelines for the upcoming year.

The Conference was initiated on November 17-19, 1947 and brought to fruition the desire of the late R. W. Harned (Chief of Cotton Insect Research for the U. S. Department of Agriculture from 1931 to 1953) to develop a conference for fostering cooperation and understanding among cotton entomologists. The advent of the synthetic organic insecticides, which were so much more effective than those previously available, generated a favorable climate for the conference; rapid evaluation of the new materials was imperative.

Fifty-two conferees attended the first conference with the number escalating to well over several hundred in subsequent years. The annual report of the conference came to be known as the cotton insect bible of the world, and it was distributed throughout the world wherever cotton was grown. So, R. W. Harned may be considered to be the Father of the conference.

The first five conferences did not include representatives from states where cotton was irrigated, viz. New Mexico, Arizona and California. However, the head of the Agriculture Research Agency (ARA) Laboratory, U. S. Department of Agriculture, Tucson, Arizona sat in on one of the conferences as an observer. Thereafter, representatives from all cotton growing states and Puerto Rico (for some years) participated in the conference.

The Agricultural Research Service (ARS) and its predecessor, ARA, have, in the past, had major responsibility for the management and coordination of the conference. R. W. Harned served as Chairman for the first six conferences, K. P. Ewing for the next four, C. F. Rainwater for the next eight, and C. R. Parencia, who participated in the first thirty-five conferences, for the next sixteen. With the latter’s retirement, J. R. Phillips (University of Arkansas) and M. E. Merkl (ARS) became Co-Chairmen for the 35th and subsequent conferences with the former responsible for the conference and the latter for revision, publication and distribution of the report. Phillips was replaced by G. A. Herzog (University of Georgia) after the 42nd Conference, and when Merkl retired after the 36th Conference, he was replaced by D. L. Bull (ARS) who left cotton insects after the 38th Conference. Bull was replaced by E. G. King (ARS) for the 39th-43rd, and D. D. Hardee (ARS) succeeded King. As of the 46th Conference, Herzog and Hardee are Co-Chairmen.
Initially, the Conference was conducted over a three-day period with detailed reports being presented by research and extension personnel from each of the states. More recently, this time has been reduced to two days with the first half day being occupied by symposia on selected topics and the subsequent one and one-half days devoted to contributed papers and a business meeting.

R. W. Harned, the first Conference Chairman, called time on no one. Consequently, discussions were often prolonged. Then, too, the early reports of the conferences were written and revised during the conferences. In retrospect, valuable time was expanded over the choice of a word or the efficacy of a compound at a certain dose against an insect. Regardless, Professor Harned wanted a unanimous decision.

The success of the conferences depended on the airing of all views. Under Professor Harned's patient guidance, a diverse group of strong-willed, independent professionals joined together for the common good. It took time and sometimes the issue, unresolved, was tabled until the following year. Professional convictions and personal feelings were kept apart and insults were rare, although tempers often flared. Once the dust had settled, conferees were friends and fellow professionals, not adversaries. As time progressed, timing of discussion was expedited.

In the early years it was the policy of conferees to meet in closed sessions excluding members from the chemical industry because new materials were coming into the picture rapidly and conferees felt that full and complete discussions of their efficacy could be held in no other way. As it was, participants exceeded desirable numbers, and addition of other personnel, especially those interested in promotion, could result in chaos. A concession to alleviate the exclusion was made in that once the insecticide efficacy section of the annual report was approved, it would be mimeographed and distributed to attendees of the subsequent Beltwide Cotton Production Conference. Distribution of this section took precedence over the regular program. It was anxiously awaited by farmers and ginners as much as by representatives of chemical companies. Members of industry thus did not have to wait until the report was published to receive the information; this was an important consideration when one realized that the future of a new insecticide might be affected by the conference report.

The first several conferences included detailed oral reporting of research results and experiences of conferees. In addition, copies of research results of a laboratory or experiences of extension personnel were brought to the conference for distribution. Data often were confidential, which was another reason for closed sessions. Although the chemical industry supported open sessions, it did not want data relating to certain compounds to be released until it was ready to release their chemistry. The policy was established that no compound was to be listed in the annual report until its chemistry was removed from the confidential status list.

Procedures for revising the Conference Report were changed in 1960 in preparation for the 14th Annual Conference on Cotton Insect Research and Control resulting in less time being needed to consider and adopt the report at the conference. Thus, one of the half-day sessions was devoted to current topics of interest presented by invited speakers. This usually was on the last one-half day of the conference. This session of
the 18th conference (1965) was not billed as an open session but word was passed that the general public was welcome to attend. This session has been open to general attendance since that time.

Southern Experiment Station Directors appointed a representative to the conference beginning with the 18th conference (1965). The representatives were Dr. E. V. Smith, Director, Alabama Agricultural Experiment Station for conferences 18 (1965) to 20 (1967); Dr. John H. Owen, Director, Georgia Agricultural Experiment Station for conferences 21 (1968) to 23 (1970); Dr. Walter K. Porter, Associate Director, Mississippi Agricultural and Forestry Experiment Station for conferences 24 (1971) to 38 (1985), and Dr. Gerald J. Musick, Dean of Agriculture and Director, Arkansas Agricultural Experiment Station for conferences 39 (1986) to date.

Beginning with the 14th conference (1965), one day was devoted to the discussion of research results and experiences, one-half day for the consideration and approval of the conference report, and one-half day for presentations on items of current interest (an open session beginning with the 18th conference). The next change was made with the 24th conference (1971) when a program committee was appointed. In this conference, the oral reporting session was reduced from one to one-half day; one-half day was devoted to concurrent sessions on current topics, one-fourth day to a summary of previous day’s topics, one-fourth day to consideration and adoption of the conference report, and one-half day to open session on current topics.

Beginning with the 25th conference (1972), one-half day was devoted to oral reports, one-half day to consideration and adoption of the report, one-half day to the discussion of current topics in the open session, and one-half day joint session with other research conferences. The latter continued through the 33rd conference (1980) when it was discontinued.

Beginning with the 27th conference (1974), the program committee system was reorganized. The committee consisted of two representatives from the state experiment stations, one from the state extension services, and one from the U. S. Department of Agriculture. The members serve two-year terms on a rotating basis. The conference chairman continued to serve as chairman of the program committee.

Beginning with the 30th conference (1977), the program committee was expanded to include a representative from the chemical industry and from the consultant organizations. They were to present oral reports for their groups and were to serve as their representatives in the closed session for consideration and adoption of the conference report.

In recent years the program has consisted of submitted papers and the one-half day invited paper session with one-half day devoted to the adoption of the insect loss data, changes in control recommendations and the airing of mutual problems. All sessions of the conference are now open.

The conference has done much toward keeping the various segments aware of the progress that is being made in the cotton insect research and control picture. The conference has expanded from the original concept of improvements in chemical control to encompass alternative methods of controlling insects. Insect population management continues to be practiced but with less reliance on insecticides.
As indicated in the preceding discussion, the first report was actually written and unanimously adopted by conferees during the conference. The draft was taken to Washington, D. C., submitted for cursory editing to available editors and published through agency procedures of USDA's Agricultural Research Service. Similarly, in the next few conferences, the report was started anew. Each topic was assigned to a committee of two to five members which completely revised or updated it from the preceding report based on the added year of research and experience. Thereafter, until the 14th conference (1961), a committee of two experiment station entomologists and a representative of the National Cotton Council met with ARS and other USDA entomologists in late October or November in Beltsville to prepare a working draft of the report which was considered and adopted at the ensuing conference. Beginning with the fourth conference (1950), a copy of the report was mailed to registrants of the Annual Cotton Production Conference which later became the Annual Cotton Production-Mechanization Conference. The Insecticide Sections of the reports of the 4th (1950) through the 12th conferences (1958) were typed, mimeographed and distributed to the conferees of the Annual Cotton Production Conference.

The first report (1974) of 16 pages consisted of an introduction and sections on insecticides, insects, bug catching machines, application equipment and conferees. Subsequent reports became longer as topics were added. In the interest of space, only the most significant additions are mentioned.

Resistance of Insects to Insecticides was added to the 9th report (1955), following a disastrous boll weevil outbreak in the Lower Delta of Mississippi and both the Mississippi and Red River Deltas of Louisiana.

The procedure for revising the report was changed for the fourteenth conference (1961). A series of questionnaires applicable to various sections of the report developed by a committee that met in Beltsville, Maryland were mailed to prospective conferees in September. The information in the returned questionnaires was compiled in the USDA, ARS Beltsville office and was included in the tentative draft of the conference report mailed to the conferees before the conference. The conferees were asked to suggest changes and additions to the chairman by mail. This procedure expedited the consideration and adoption of the report and made additional time available for other conference activities.

The thirty-first report of 75 pages added a section on conference highlights which was an important improvement in it and subsequent reports.

The thirty-third report (1980) of 77 pages added a table on yield losses to the cotton crop caused by various cotton insects and spider mites. This, too, was a valuable addition to the report. Past experience showed that such losses developed by the U. S. Department of Agriculture invite considerable criticism. Estimates under the auspices of the annual conference invite less criticism even though the same scientists are involved in their development. From the beginning, the development of annual estimates on cotton yield losses has been financially supported in part by The Cotton Foundation.

While the general chairman was responsible for revising, publishing, and distributing the report, it was standard procedure to have the revised report on camera copy
delivered by the end of January to the technical editor who in turn delivered it to the Office of Communication in the Department of Agriculture for publication with expected delivery of the published report by the end of February. The report was hand carried to the technical editor and to the Office of Communication, U. S. Department of Agriculture in Washington, D. C.

It might be added here that technical editors at headquarters provided cursory editing. Before tape and mag card machines became available, the changes in the report were pieced in so that it had blank spaces which affected the continuity of the report. Also, before sophisticated duplicating equipment became available, trouble was experienced in putting together and assembling the tentative drafts of the report.

In 1976, the conference chairman moved from headquarters in Beltsville, Maryland to an assignment in Stoneville, Mississippi. Thus, the thirtieth report (1977) was edited and publication arrangements were made in the ARS Southern Region Office, New Orleans, Louisiana. With the thirty-first report (1978) the technical editors made suggestions on tightening the report and that and other editions were considerably improved in appearance as well as content.

The last formal report was issued in 1984 as the 37th Annual Conference Report on Cotton Insect Research and Control. Since that time the highlights of the annual conference, changes in insect control recommendations, and insect loss data have been published in the Cotton Insect Section of the Annual Proceedings of the Beltwide Cotton Research Conferences. The conferees planned to publish and update a report after every five annual conferences have been held.

As a result of the Annual Conferences on Cotton Insect Research and Control, there is no other agricultural area with as much compatibility among State, ARS, consultant and industry personnel in the research, extension and control efforts for insects than those that attack cotton. Conferees can be justly proud of the accomplishments of the conference in its forty plus year history. No less should be expected from conferences of the future.

C. R. Parencia
Collaborator
USDA, ARS
Stoneville, Mississippi
and
D. D. Hardee
Laboratory Director
Southern Insect Management Laboratory
USDA, ARS
Stoneville, Mississippi